Recurrent Convolutional Networks for Pulmonary Nodule Detection in CT Imaging

نویسندگان

  • Petros-Pavlos Ypsilantis
  • Giovanni Montana
چکیده

Computed tomography (CT) generates a stack of cross-sectional images covering a region of the body. The visual assessment of these images for the identification of potential abnormalities is a challenging and time consuming task due to the large amount of information that needs to be processed. In this article we propose a deep artificial neural network architecture, ReCTnet, for the fully-automated detection of pulmonary nodules in CT scans. The architecture learns to distinguish nodules and normal structures at the pixel level and generates three-dimensional probability maps highlighting areas that are likely to harbour the objects of interest. Convolutional and recurrent layers are combined to learn expressive image representations exploiting the spatial dependencies across axial slices. We demonstrate that leveraging intra-slice dependencies substantially increases the sensitivity to detect pulmonary nodules without inflating the false positive rate. On the publicly available LIDC/IDRI dataset consisting of 1,018 annotated CT scans, ReCTnet reaches a detection sensitivity of 90.5% with an average of 4.5 false positives per scan. Comparisons with a competing multi-channel convolutional neural network for multislice segmentation and other published methodologies using the same dataset provide evidence that ReCTnet offers significant performance gains. 1 ar X iv :1 60 9. 09 14 3v 1 [ st at .M L ] 2 8 Se p 20 16

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Pulmonary Nodule Detection in Computed Tomography Images Using Deep Convolutional Neural Networks

Early detection of pulmonary cancer is the most promising way to enhance a patient’s chance for survival. Accurate pulmonary nodule detection in computed tomography (CT) images is a crucial step in diagnosing pulmonary cancer. In this paper, inspired by the successful use of deep convolutional neural networks (DCNNs) in natural image recognition, we propose a novel pulmonary nodule detection ap...

متن کامل

Pulmonary Nodule Classification with Convolutional Neural Networks

With oncologists relying increasingly on low-dose CT scans to detect lung cancer, our project aims to enhance the automated detection of potentially cancerous lung nodules in these scans. While existing algorithms in the medical imaging domain focus on segmentation and diagnosis through traditional image processing techniques for identifying pathological traits, we approach the problem more gen...

متن کامل

A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients

Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...

متن کامل

Lung-Deep: A Computerized Tool for Detection of Lung Nodule Patterns using Deep Learning Algorithms Detection of Lung Nodules Patterns

The detection of lung-related disease for radiologists is a tedious and time-consuming task. For this reason, automatic computer-aided diagnosis (CADs) systems were developed by using digital CT scan images of lungs. The detection of lung nodule patterns is an important step for the automatic development of CAD system. Currently, the patterns of lung nodule are detected through domain-expert kn...

متن کامل

Automated Pulmonary Nodule Detection via 3D ConvNets with Online Sample Filtering and Hybrid-Loss Residual Learning

In this paper, we propose a novel framework with 3D convolutional networks (ConvNets) for automated detection of pulmonary nodules from low-dose CT scans, which is a challenging yet crucial task for lung cancer early diagnosis and treatment. Different from previous standard ConvNets, we try to tackle the severe hard/easy sample imbalance problem in medical datasets and explore the benefits of l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1609.09143  شماره 

صفحات  -

تاریخ انتشار 2016